3.207 \(\int \frac{\sec ^m(c+d x)}{\sqrt [3]{b \sec (c+d x)}} \, dx\)

Optimal. Leaf size=82 \[ -\frac{3 \sin (c+d x) \sec ^{m-1}(c+d x) \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{1}{6} (4-3 m),\frac{1}{6} (10-3 m),\cos ^2(c+d x)\right )}{d (4-3 m) \sqrt{\sin ^2(c+d x)} \sqrt [3]{b \sec (c+d x)}} \]

[Out]

(-3*Hypergeometric2F1[1/2, (4 - 3*m)/6, (10 - 3*m)/6, Cos[c + d*x]^2]*Sec[c + d*x]^(-1 + m)*Sin[c + d*x])/(d*(
4 - 3*m)*(b*Sec[c + d*x])^(1/3)*Sqrt[Sin[c + d*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0390033, antiderivative size = 82, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {20, 3772, 2643} \[ -\frac{3 \sin (c+d x) \sec ^{m-1}(c+d x) \, _2F_1\left (\frac{1}{2},\frac{1}{6} (4-3 m);\frac{1}{6} (10-3 m);\cos ^2(c+d x)\right )}{d (4-3 m) \sqrt{\sin ^2(c+d x)} \sqrt [3]{b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^m/(b*Sec[c + d*x])^(1/3),x]

[Out]

(-3*Hypergeometric2F1[1/2, (4 - 3*m)/6, (10 - 3*m)/6, Cos[c + d*x]^2]*Sec[c + d*x]^(-1 + m)*Sin[c + d*x])/(d*(
4 - 3*m)*(b*Sec[c + d*x])^(1/3)*Sqrt[Sin[c + d*x]^2])

Rule 20

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[(b^IntPart[n]*(b*v)^FracPart[n])/(a^IntPart[n
]*(a*v)^FracPart[n]), Int[u*(a*v)^(m + n), x], x] /; FreeQ[{a, b, m, n}, x] &&  !IntegerQ[m] &&  !IntegerQ[n]
&&  !IntegerQ[m + n]

Rule 3772

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x])^(n - 1)*((Sin[c + d*x]/b)^(n - 1)
*Int[1/(Sin[c + d*x]/b)^n, x]), x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 2643

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1)*Hypergeomet
ric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2])/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2]), x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rubi steps

\begin{align*} \int \frac{\sec ^m(c+d x)}{\sqrt [3]{b \sec (c+d x)}} \, dx &=\frac{\sqrt [3]{\sec (c+d x)} \int \sec ^{-\frac{1}{3}+m}(c+d x) \, dx}{\sqrt [3]{b \sec (c+d x)}}\\ &=\frac{\left (\cos ^{\frac{2}{3}+m}(c+d x) \sec ^{1+m}(c+d x)\right ) \int \cos ^{\frac{1}{3}-m}(c+d x) \, dx}{\sqrt [3]{b \sec (c+d x)}}\\ &=-\frac{3 \, _2F_1\left (\frac{1}{2},\frac{1}{6} (4-3 m);\frac{1}{6} (10-3 m);\cos ^2(c+d x)\right ) \sec ^{-1+m}(c+d x) \sin (c+d x)}{d (4-3 m) \sqrt [3]{b \sec (c+d x)} \sqrt{\sin ^2(c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.140716, size = 83, normalized size = 1.01 \[ \frac{\sqrt{-\tan ^2(c+d x)} \csc (c+d x) \sec ^{m-1}(c+d x) \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{1}{2} \left (m-\frac{1}{3}\right ),\frac{1}{2} \left (m+\frac{5}{3}\right ),\sec ^2(c+d x)\right )}{d \left (m-\frac{1}{3}\right ) \sqrt [3]{b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^m/(b*Sec[c + d*x])^(1/3),x]

[Out]

(Csc[c + d*x]*Hypergeometric2F1[1/2, (-1/3 + m)/2, (5/3 + m)/2, Sec[c + d*x]^2]*Sec[c + d*x]^(-1 + m)*Sqrt[-Ta
n[c + d*x]^2])/(d*(-1/3 + m)*(b*Sec[c + d*x])^(1/3))

________________________________________________________________________________________

Maple [F]  time = 0.082, size = 0, normalized size = 0. \begin{align*} \int{ \left ( \sec \left ( dx+c \right ) \right ) ^{m}{\frac{1}{\sqrt [3]{b\sec \left ( dx+c \right ) }}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^m/(b*sec(d*x+c))^(1/3),x)

[Out]

int(sec(d*x+c)^m/(b*sec(d*x+c))^(1/3),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{m}}{\left (b \sec \left (d x + c\right )\right )^{\frac{1}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^m/(b*sec(d*x+c))^(1/3),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^m/(b*sec(d*x + c))^(1/3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\left (b \sec \left (d x + c\right )\right )^{\frac{2}{3}} \sec \left (d x + c\right )^{m}}{b \sec \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^m/(b*sec(d*x+c))^(1/3),x, algorithm="fricas")

[Out]

integral((b*sec(d*x + c))^(2/3)*sec(d*x + c)^m/(b*sec(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{m}{\left (c + d x \right )}}{\sqrt [3]{b \sec{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**m/(b*sec(d*x+c))**(1/3),x)

[Out]

Integral(sec(c + d*x)**m/(b*sec(c + d*x))**(1/3), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{m}}{\left (b \sec \left (d x + c\right )\right )^{\frac{1}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^m/(b*sec(d*x+c))^(1/3),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^m/(b*sec(d*x + c))^(1/3), x)